Detailed proofs and clear-cut explanations provide an excellent introduction to the elementary components of classical algebraic number theory in this concise, well-written volume. The authors, a pair of noted mathematicians, start with a discussion of divisibility and proceed to examine Gaussian primes (their determination and role in Fermat’s theorem); polynomials over a field (including the Eisenstein irreducibility criterion); algebraic number fields; bases (finite extensions, conjugates and discriminants, and the cyclotomic field); and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture (concluding with discussions of Pythagorean triples, units in cyclotomic fields, and Kummer’s theorem). In addition to a helpful list of symbols and an index, a set of carefully chosen problems appears at the end of each chapter to reinforce mathematics covered. Students and teachers of undergraduate mathematics courses will find this volume a first-rate introduction to algebraic number theory.
“Facilitating the Integration of Learning Five Research-Based Practices to Help College Students Connect Learning Across Disciplines and Lived Experience 1st Edition – (PDF/EPUB Version)” has been added to your cart. View cart
The Theory of Algebraic Numbers – (PDF/EPUB Version)
Author(s): Harry Pollard
Publisher: Dover Publications
ISBN: 9780486404547
Edition:
$19,99
Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable
Recommended Software: Check here