Differential Geometry – (PDF/EPUB Version)

Author(s): Heinrich W. Guggenheimer
Publisher: Dover Publications
ISBN: 9780486634333
Edition:

$19,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a general theory of connections. The author presents a full development of the Erlangen Program in the foundations of geometry as used by Elie Cartan as a basis of modern differential geometry; the book can serve as an introduction to the methods of E. Cartan. The theory is applied to give a complete development of affine differential geometry in two and three dimensions. Although the text deals only with local problems (except for global problems that can be treated by methods of advanced calculus), the definitions have been formulated so as to be applicable to modern global differential geometry. The algebraic development of tensors is equally accessible to physicists and to pure mathematicians. The wealth of specific resutls and the replacement of most tensor calculations by linear algebra makes the book attractive to users of mathematics in other disciplines.

Differential Geometry – (PDF/EPUB Version)

Author(s): Erwin Kreyszig
Publisher: Dover Publications
ISBN: 9780486667218
Edition:

$19,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

This outstanding textbook by a distinguished mathematical scholar introduces the differential geometry of curves and surfaces in three-dimensional Euclidean space. The subject is presented in its simplest, most essential form, but with many explanatory details, figures and examples, and in a manner that conveys the geometric significance and theoretical and practical importance of the different concepts, methods and results involved. The first chapters of the book focus on the basic concepts and facts of analytic geometry, the theory of space curves, and the foundations of the theory of surfaces, including problems closely related to the first and second fundamental forms. The treatment of the theory of surfaces makes full use of the tensor calculus. The later chapters address geodesics, mappings of surfaces, special surfaces, and the absolute differential calculus and the displacement of Levi-Cività. Problems at the end of each section (with solutions at the end of the book) will help students  meaningfully review the material presented, and familiarize themselves with the manner of reasoning in differential geometry.

Differential Geometry – (PDF/EPUB Version)

Author(s): William C. Graustein
Publisher: Dover Publications
ISBN: 9780486450117
Edition:

$19,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry. Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of surfaces, and the absolute geometry of a surface. The final chapter considers the applications of the theory to certain important classes of surfaces: surfaces of revolution, ruled surfaces, translation surfaces, and minimal surfaces. Nearly 200 problems appear throughout the text, offering ample reinforcement of every subject.